Bicritical Rational Maps With a Common Iterate

نویسندگان

چکیده

Abstract Let $f$ be a degree $d$ bicritical rational map with critical point set $\mathcal{C}_f$ and value $\mathcal{V}_f$. Using the group $\textrm{Deck}(f^k)$ of deck transformations $f^k$, we show that if $g$ is shares an iterate $f$, then $\mathcal{C}_f = \mathcal{C}_g$ $\mathcal{V}_f \mathcal{V}_g$. this, two maps even share iterate, they second both belong to symmetry locus maps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bicritical Rational Maps

This is a preliminary investigation of the geometry and dynamics of rational maps with only two critical points.

متن کامل

Rational maps with real multipliers

Let f be a rational function such that the multipliers of all repelling periodic points are real. We prove that the Julia set of such a function belongs to a circle. Combining this with a result of Fatou we conclude that whenever J(f) belongs to a smooth curve, it also belongs to a circle. Then we discuss rational functions whose Julia sets belong to a circle. MSC classes: 37F10, 30D05. A simpl...

متن کامل

Chaotic Maps with Rational Zeta Function

Fix a nontrivial interval X C R and let / e C1(X,X) be a chaotic mapping. We denote by Aoo (/) the set of points whose orbits do not converge to a (one-sided) asymptotically stable periodic orbit of / or to a subset of the absorbing boundary of X for /. A. We assume that / satisfies the following conditions: (1) the set of asymptotically stable periodic points for / is compact (an empty set is ...

متن کامل

On Rational Maps with Two Critical Points

This is a preliminary investigation of the geometry and dynamics of rational maps with only two critical points.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2023

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnad041